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I. REVIEW

Here’s one more piece of terminology that will come in handy.

Definition 1. Let ϕ1 : U1 → Û1 and ϕ2 : U2 → Û2 be two complex charts on a topological
surface X. Then (U1, ϕ1), (U2, ϕ2) are holomorphically compatible if either U1 ∩U2 = ∅, or
the transition function

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩U2)→ ϕ2(U1 ∩U2)

is holomorphic.

Last time we:
(1) Reviewed/learned some facts about holomorphic functions. The takeaway is that

holomorphic functions are analytic, meaning they are given by power series.
(2) Defined Riemann surfaces. The upshot is that a Riemann surface is something

that locally looks like C. More precisely, it is equipped with a holomorphic at-
las, whose charts are holomorphically compatible, so the transition functions are
holomorphic.

Bonus: here’s a proof of Liouville’s Theorem.

Proof. Suppose f is entire and bounded, so there exists M ∈ R such that | f (z)| ≤ M for
all z ∈ C. Fix z ∈ C and for each R ∈ R>0, let γR be the circle |ζ − z| = R centered at z of
radius R, traversed counterclockwise. By the generalized Cauchy integral formula, then

| f ′(z)| =
∣∣∣∣ 1
2πi

∫
γR

f (ζ)
(ζ − z)2 dζ

∣∣∣∣ ≤ 1
2π

∫
γR

| f (ζ)|
|ζ − z|2 |dζ| = 1

2π

∫
γR

M
R2 |dζ|

=
1

2π

M
R2 · 2πR =

M
R

.

Date: February 24, 2021.
1



This holds for all R ∈ R>0, so taking R→ ∞ we have | f ′(z)| ≤ M
R
→ 0. �

II. ALGEBRAIC CURVES AS RIEMANN SURFACES

We’ll be following chapter 1 of Miranda for today.

Example 2 (Graph of a holomorphic function). Let U ⊆ C be a connected open subset,
and let f : U → C be holomorphic. Consider the graph of f

X = {(z, f (z)) ∈ C2 : z ∈ U}
equipped with the subspace topology. Let π : X → U be the projection (z, w) 7→ z. Then
π is a homeomorphism with inverse z 7→ (z, f (z)). Thus π is a coordinate chart on X,
and X is a Riemann surface, with an atlas consisting of the single chart (X, π). (Once we
define morphisms of Riemann surfaces, we’ll see that the graph is isomorphic to U.)

Similarly, given an finite collection f1, . . . , fm of holomorphic functions defined on U,
their graph

X = {(z, f1(z), . . . , fm(z)) ∈ Cm+1 : z ∈ U}
is a Riemann surface.

Definition 3. Let k be a field and n ∈ Z≥0. Affine n-space over k is defined as An = kn.

Definition 4. Given a polynomial f (x1, . . . , xn) ∈ C[x1, . . . , xn], define its vanishing locus
or (zero locus) in An by

V( f ) := {(x1, . . . , xn) ∈ An : f (x1, . . . , xn) = 0} .

Theorem 5. If f (x, y) ∈ C[x, y] is irreducible, then its zero locus V( f ) is connected.

Remark 6. We won’t prove this. It’s not hard to show that it’s connected in the Zariski
topology, but considerably harder in the usual complex topology.

Definition 7. An affine plane curve X is the zero locus in A2 of an irreducible polynomial
f (x, y) ∈ C[x, y]. A point P ∈ X is singular if fx(P) = fy(P) = 0; otherwise it is nonsingular.
If all the points of X are nonsingular, then we say that X is nonsingular or smooth.

Remark 8. We often write X : f (x, y) = 0 to mean X = V( f ).

To show that a smooth affine plane curve is a Riemann surface, we’ll need the following
result from analysis.

Theorem 9 (Implicit Function Theorem). Let f (x, y) ∈ C[x, y], let X = V( f ) be its zero

locus, and let P = (x0, y0) ∈ X. Suppose that
∂ f
∂y

(P) 6= 0. Then there is a function g(x) defined

and holomorphic in a neighborhood of x0 such that, in a neighborhood of P, X is equal to the graph
y = g(x), i.e., f (x, g(x)) = 0 for all x in a neighborhood of x0.

Remark 10. The analogous result is true if we instead assume
∂ f
∂x

(P) 6= 0

Theorem 11. Let X = V( f ) be a nonsingular affine plane curve. Then X is a Riemann surface.
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Proof. The idea is to use the implicit function theorem to locally express X as the graph
of a holomorphic function. As in the example above, this allows us to use the projection
map to construct a chart around each point.

Given a point P ∈ X, then fx(P) 6= 0 or fy(P) 6= 0 since X is smooth. If fy(P) 6= 0 then
there is a open neighborhood U of P and a holomorphic function g such that y = g(x) on
this neighborhood. Thus we take (U, πx) as a chart at P, where πx : (x, y) 7→ x. Similarly,
if fx(P) 6= 0 then there exists an open neighborhood V of P and a holomorphic function
h such that x = h(y) on V. In this case, we take (V, πy) as our chart at P.

To see that these charts form a holomorphic atlas, note that

πy ◦ π−1
x : z 7→ (z, g(z)) 7→ g(z)

which is holomorphic. �

Example 12.
(1) An (affine) hyperelliptic curve X is an affine plane curve given by an equation of

the form y2 = f (x), where f is a polynomial with distinct roots and of degree
deg( f ) ≥ 5. If deg( f ) = 3 or 4, X is instead called an elliptic curve. (We will later
see that, denoting the degree of f by 2g + 1 or 2g + 2, then the curve X has genus
g.)

(2) An (affine) Fermat curve X is an affine plane curve given by an equation of the
form

xd + yd = 1
for some d ≥ 1. It is so called because nontrivial rational points on X would give
counterexamples to Fermat’s Last Theorem.

III. PROJECTIVE PLANE CURVES

III.1. The projective plane. Affine plane curves are not complete: they usually run off to
infinity. Projective space provides the right setting in which to compactify them

Definition 13. Let k be a field. The projective plane over k is the set of 1-dimensional
subspaces of k3. Equivalently, define

P2 =
k3 \ {(0, 0, 0)}

∼
where ∼ is the equivalence relation defined by: given v ∈ k3 \ {(0, 0, 0)}, v ∼ λv for all
λ ∈ C×. As before, we denote equivalence classes in P2 by [z0 : z1 : z2].We equip P2 with
the quotient topology.

The entries of [z0 : z1 : z2] are called homogeneous coordinates. The homogeneous coor-
dinates of a point in P2 are not unique, since we can always scale by an element of k×.
However, whether a coordinate is zero or not is well-defined.

Remark 14. Note that [0 : 0 : 0] is not a point in P2!

The projective plane P2 comes with a standard affine cover consisting of the three open
subsets

Uj := {[z0 : z1 : z2] : zj 6= 0}
3



for j = 0, 1, 2. Each open set Uj is homeomorphic to the affine plane A2. For instance, the
homeomorphism for U0 is given by

U0 → A2

[z0 : z1 : z2] = [1 : z1/z0 : z2/z0] 7→
(

z1

z0
,

z2

z0

)
,

with inverse

A2 → U0

(x, y) 7→ [1 : x : y] .

Remark 15. A subset S ⊆ P2 is open iff S ∩Uj is open for all j = 0, 1, 2.

We now restrict to the case of k = C.

Lemma 1. P2 is compact.

Proof. Note that every point [z0 : z1 : z2] in P2 has a representative with

|z0| ≤ 1, |z1| ≤ 1, |z2| ≤ 1 .

Thus P2 is the image of the compact set

{(z0, z1, z2) ∈ C2 : |zj| ≤ 1 ∀j = 0, 1, 2}

under the quotient map C3 → P2. �

III.2. Projective plane curves. Now that we have a compact ambient space to work in,
we’d like to define curves in the projective plane. The fact that the value of a homoge-
neous coordinate is not well-defined creates some restrictions.

Definition 16. A polynomial F ∈ C[x, y, z] is homogeneous if every monomial term has the
same total degree. This total degree is called the degree of F.

Example 17. The polynomial F = y2z + 2xyz− x3 − xz2 is homogeneous of degree 3.

Let F ∈ C[x, y, z] be homogeneous of degree d. As suggested above, it doesn’t make
sense to evaluate a point [a : b : c] ∈ P2. Indeed, we have [a : b : c] = [λa : λb : λc] for
every λ ∈ C×, but

F(λa, λb, λc) = λdF(a, b, c)

since F is homogeneous of degree d. However, it does make sense to ask whether F(a, b, c)
is zero or not, since this is preserved by scaling by a nonzero scalar.

Definition 18. Let F ∈ C[x, y, z] be a homogeneous polynomial. The vanshing locus or zero
locus of F is

V(F) := {[x0 : x1 : x2] ∈ P2 : F(x0, x1, x2) = 0}

Lemma 2. V(F) is a closed subset of P2.
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The intersection Xj of X with the open subsets Uj is an affine plane curve when mapped
under the homeomorphism Uj → A2. For example, on U0 where x0 6= 0, we have

X0 = X ∩U0
∼→ {(u, v) ∈ A2 : F(1, u, v)}

[x0 : x1 : x2] = [1 : x1/x0 : x2/x0] 7→ (x1/x0, x2/x0)

F(1, u, v) is called the dehomogenization of F with respect to the variable x0, and is de-
noted by F∗. Letting f = F∗, so f (u, v) = F(1, u, v), then X0 is given by f (u, v) = 0.

Definition 19. Let X : F(x, y, z) = 0 be a projective plane curve. A point PX is singular
if Fx(P) = Fy(P) = Fz(P) = 0; otherwise it is nonsingular. If all the points of X are
nonsingular, then X is nonsingular or smooth.

Remark 20. In other words, X = V(F) is nonsingular iff there are no common solutions
to the system of equations

F = Fx = Fy = Fz = 0

in P2.

Nonsingularity is a local property, hence can be checked on the standard affine open
cover.

Proposition 21. Let X : F(x, y, z) = 0 be a projective plane curve. Then X is nonsingular iff Xj
is nonsingular for each j = 0, 1, 2.

Proof. HW? It’s mostly straightforward, except at one point one uses Euler’s formula for
homogeneous polynomials. �

Proposition 22. Let X : F(x0, x1, x2) = 0 be a nonsingular projective plane curve, where F ∈
C[x0, x1, x2] is homogeneous. Then X is a compact, connected Riemann surface. Moreover, at
every point of X one can take a ratio of the homogeneous coordinates as a local coordinate.

Proof. We give just a sketch. First, note that X is a closed subset of the compact set P2,
hence is itself compact. One can show that a nonsingular homogeneous polynomial is
automatically irreducible, but we won’t prove this.

Here’s a sketch of the rest of the proof. Recall that the three open subsets X0, X1, X2
are smooth affine plane curves, hence are Riemann surfaces by our results above. Or,
more precisely, letting Y0, Y1, Y2 be their respective images under the homeomorphisms
Uj

∼→ A2, then Y0, Y1, Y2 are smooth affine plane curves. Recall that the coordinate charts
on the Yj are simply one of the projections onto a coordinate. Consider X0, for example.
A coordinate map on Y0 is given by one of the projections, i.e., it is either of the form

(z1, z2) 7→ z1 or (z1, z2) 7→ z2

Composing with the homeomorphism

U0
∼→ A2

[x0 : x1 : x2] 7→ (x1/x0, x2/x0)

we find that the coordinate maps of X0 are of the form

[x0 : x1 : x2] 7→ x1/x0 or [x0 : x1 : x2] 7→ x2/x0 .
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Every point P ∈ X is contained in some Xj, so to show that the union of the atlases
of X0, X1, X2 yields an atlas for X, it suffices to check that the charts on Xi and Xj are
holomorphically compatible for all i, j. For example, consider a point P ∈ X that is in
both X0 and X1. Then P = [a0, a1, a2] where a0 6= 0 and a1 6= 0. Suppose the coordinate of
X0 near P is

ψ0 : X0 → Y0 → C

[x0 : x1 : x2] 7→ (x1/x0, x2/x0) 7→ x1/x0

with inverse

ψ−1
0 : C→ Y0 → X0

w 7→ (w, h(w)) 7→ [1 : w : h(w)]

for some holomorphic complex-valued function h, and the coordinate of X1 near P is

ψ1 : X1 → Y1 → C

[x0 : x1 : x2] 7→ (x0/x1, x2/x1) 7→ x2/x1 .

Then the transition function is given by

ψ1 ◦ ψ−1
0 : w 7→ [1 : w : h(w)] 7→ h(w)/w

and this is holomorphic since w 6= 0, as the point [1 : w : h(w)] is in X1.
One can similarly check that all the other possible combinations of charts also yield

holomorphic transition functions. Thus all the charts of X0, X1, X2 are holomorphically
compatible, hence form an atlas for X. �
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